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Particle deposition is important in many environmental
systems such as water and wastewater filtration, air
pollution control, subsurface transport, biofilm formation
and fouling, and thin film synthesis for use in remediation
technologies. While continuum-level models have been
developed to predict deposition dynamics in these systems,
these models fail to explain transient dynamics of multilayer
deposition from a mechanistic viewpoint. In this work,
a multiscale approach has been developed to predict multiple
layer irreversible colloidal deposition in the presence of
interparticle electrostatic and van der Waals interactions
in porous media. The approach combines the kinetic
information obtained from the mesoscopic stochastic
simulations of particle deposition with the macroscopic
conservation equation describing colloidal transport.
Sequential Brownian dynamics simulations are first performed
by accounting for particle-particle (P-P) and particle-
surface (P-S) interactions, and multilayered particle deposits
are obtained. The available surface function quantifying
the deposition kinetics is then obtained from the deposit
microstructure. Deposition dynamics are studied at different
ionic strengths and particle potentials that control the
range and magnitude of interparticle interactions. Simulation
results showed that the microstructure of the particle
deposits formed under the influence of P-P and P-S
electrostatic interactions exhibited significant variations
with respect to ionic strength and could be qualitatively
explained by the interplay between the repulsive and attractive
P-P and P-S interaction forces. The available surface
function also varied significantly as a function of ionic strength.
This basic understanding of the deposition dynamics at
the mesoscale was then combined with the continuum-
level transport equations to predict particle breakthrough
curves in porous media. The approach is capable of
capturing transient features of deposition dynamics, as

demonstrated by the good agreement between the model
predictions and the experimental observations.

Introduction
Transport of particles toward a solid-liquid or a gas-solid
interface, often referred to as deposition, is of importance
in many environmental systems such as water and wastewater
filtration, air pollution control devices, subsurface contami-
nant transport, biofilm formation and fouling, and nano-
structured coatings/films synthesis for use in remediation
technologies. In light of these applications, development of
theoretical models that accurately capture the dynamical
behavior under a variety of operating conditions is important.
Continuum-level models do not accurately predict deposition
dynamics as they do not account for the varying and evolving
structure of the deposit. Colloidal deposition on collector
surfaces is often irreversible and has been the subject of
numerous theoretical and experimental studies (1), although
the primary focus has been on convective and/or diffusional
deposition leading to monolayer formation on the adsorption
surface (2-8). Monolayer deposition theories (wherein
incoming particles can only deposit on the unoccupied
locations on the surface and where deposition stops, due to
electrostatic repulsion, after achieving the saturation coverage
in the first layer) have been used to predict deposition kinetics.
The most widely used model of irreversible monolayer
deposition of hard spherical particles in the dilute limit is
the random sequential adsorption (RSA) model (2, 9, 10).
Deposition kinetics in RSA has been widely studied (2, 4, 8,
11, 12) by using a pseudo timescale obtained from the number
of deposition attempts.

In many environmental processes, the suspensions are
not always stable due to high ionic strength or low particle
potential, and the assumption of monolayer formation is
not valid; deposition of incoming particles onto already
deposited particles is feasible. For example, in porous media,
such as a filter bed, the rate of deposition of particles often
increases with time, a phenomenon referred to as ‘filter
ripening” (13-16). In such systems the deposited particles
form multilayered fractal structures that increase the available
surface area, and hence the net deposition rate (14).
Furthermore, the retained particles on the surface can
significantly influence the flux on depositing particles through
short- or long-ranged electrostatic interactions. Thus, in
contrast to monolayer deposition, the rate of multilayer
deposit formation depends not only on interparticle interac-
tions but also on the morphology of the deposit structure.

Multilayer deposition in porous media has mainly been
described phenomenologically by Omelia and Ali (13).
Privman et al. (17) presented a mean field theory for multilayer
deposition in packed beds. They formulated their model along
the lines of monolayer theories and included a parameter
characterizing deposition probability on retained particles.
Lubachevsky et al. (18) used computer simulations to study
morphology of particle deposits formed under ballistic
deposition. Wiesner and co-workers (19-21) have investi-
gated the relationship between transport mechanisms,
deposit morphology, and pressure loss in porous media.
Recently, Kulkarni et al. (22) studied the role of interparticle
interactions on morphology of colloidal deposits resulting
from diffusional deposition on a one-dimensional substrate.
They studied variation of coverage in different layers as a
function of particle potential and electrolyte concentration
using a multiscale simulation approach with lattice-based
simulations for deposition onto a 1-D surface.
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Experimental studies on deposition provide sufficient
evidence of existence of multilayers under electrostatically
or hydrodynamically favorable conditions (1, 16, 23). Ryde
et al. (1) studied the effect of electrolyte concentration on
deposition of spherical hematite particles on spherical glass
collectors in a packed column to investigate the influence of
colloidal stability on multilayer deposition. They found that
the multilayer model developed by Privman et al. (17) could
explain the trends in experimental data, whereas the mono-
layer model failed to do so. Song and Elimelech (15) have
investigated the role of retained particles on deposition rates
in porous media. Liu et al. (16) examined the role of electrolyte
concentration on deposition dynamics. Kuhnen et al. (23)
studied transport of iron oxide colloids in packed quartz sand
media at varying ionic strengths and clearly observed
multilayer deposition at high ionic strengths.

Since particle deposition is an inherently dynamical
process exhibiting variable kinetics during the course of
deposition, the concept of available surface (or blocking)
function has been used to capture the range of kinetic
behaviors including initial rates and long time asymptotic
behavior (2, 5, 24). The available surface function essentially
characterizes the probability of a particle depositing on a
bare collector surface and is a function of fraction of collector
area occupied by deposited particles. Schaaf and Talbot (24)
developed an expression for available surface function based
on a virial expansion of excluded area effects to the third
order in coverage, valid for low to moderate coverage values.
Adamczyk et al. developed a more general expression for
soft spheres by using the “blocking parameter” (25). Johnson
and Elimelech (7) have used a Langmuir- and RSA-based
dynamical blocking function to describe monolayer deposi-
tion in porous media. They used experimentally estimated
saturation coverages in conjunction with the RSA- and
Langmuirian-type blocking functions to predict particle
breakthrough curves in porous media. A RSA-type blocking
function was found to capture the monolayer deposition
dynamics more accurately as compared to Langmuirian. They
also observed that at high ionic strength, when deposition
was possibly multilayered, the RSA blocking function could
not capture the dynamics satisfactorily. Recently, Magan and
Sureshkumar (32) have developed an efficient multiscale
algorithm for irreversible monolayer deposition. They com-
bined Brownian dynamics simulations to evaluate particle
trajectories with the solution of the continuum-level con-
servation law for particle concentration to help reduce the
CPU time. The blocking function was found to be between
the asymptotic results of the RSA and ballistic deposition
values. These studies dealt with monolayer systems, in which
the deposition flux decreased with time due to interparticle
repulsive interactions. In contrast to monolayer deposition,
multilayer systems are much more complex since the kinetics
depend not only on interparticle interactions but also on the
fractal morphology of the deposit. In an earlier work, the
relationship between deposition mechanism and resulting
morphology in the presence of interparticle interactions in
multilayer deposition was investigated (22). Lattice based
Monte Carlo simulations were performed to understand the
influence of range and magnitude of electrostatic interactions
on microstructure of deposits formed on a 1-D surface (22).
The study revealed the importance of accounting for P-P
and P-S interactions in the particle deposition processes.

In this paper, the previous work (22) is extended to a
generalized 2-D deposition surface by combining a basic
understanding of deposition dynamics obtained from me-
soscale stochastic simulations with the solution of continuum-
level conservation laws to predict the transient features of
deposition dynamics. This approach incorporates the relevant
dynamical information about the colloidal deposition process
at the mesoscale obtained from Brownian dynamics simula-

tions into the continuum-level particle transport equations
to predict breakthrough curves in porous media. Kinetics of
coverage in different layers were then used to develop an
expression for the available surface function for the entire
deposit. The available surface function for the entire deposit
is then used to predict macroscopic deposition flux in porous
media.

Theory
Irreversible colloidal deposition dynamics in a packed column
of spherical collectors has been traditionally modeled using
the convection-diffusion equation for macroscopic particle
concentration in the porous medium, coupled with a kinetic
equation describing monolayer deposition onto the collector
surface (7, 17):

where C is the number concentration of colloidal particles
in the column at time t at the vertical spatial coordinate Z,
Deff is the hydrodynamic diffusion coefficient of particles, vp

is the interstitial particle velocity, Φ(θ) is the blocking
function, kdep is the particle transfer coefficient, a is the
particle radius, θ is the surface coverage, and f is the specific
surface area of the porous medium in a cylindrical geometry
given by

where ε is the porosity of packed bed and ac is the collector
radius. Typically the Peclet number (vplz/Deff) is of the order
of ∼104-106 where lz is a typical length scale in the z direction,
taken as collector radius ac; and particle diffusion plays only
a minor role in axial transport of particles (17). Neglecting
diffusion and applying a splitting technique as defined in
Privman et al. (17), the above equations are reduced to

where

with the initial and boundary conditions as

Note that eq 2a assumes that the colloidal concentration is
at steady state. This implies that vp/kdep .1. This assumption
is justifiable since this ratio is typically of the order of 102-
103. To solve the above set of equations, expression for Φ(θ)
should be known a priori. For monolayer deposition Φ(θ) is
usually based on either a Langmuirian model:

∂C
∂t

) Deff
∂

2C

∂Z2
- vp

∂C
∂Z

- fkdepΦ(θ)C (1a)

∂θ
∂t

) Φ(θ)πa2kdepC (1b)

f )
3(1 - ε)

εac
(1c)

∂C
∂X

+ fΦ(θ)kdepC ) 0 (2a)

∂θ
∂τ

- Φ(θ)πa2kdepC ) 0 (2b)

X ) Z
vp

(2c)

τ ) t - Z
vp

(2d)

C(X, 0) ) 0 (2e)

C(0, τ > 0) ) C0 (2f)

θ(X, 0) ) 0 (2g)
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or RSA (24):

where θmax is monolayer saturation coverage on the surface.
Φ(θ) can be thus interpreted as the probability of particle
deposition on a bare collector surface at a given value of θ.
Schaaf and Talbot (24) derived eq 4a based on the RSA
simulations for non-interacting hard-spheres where coverage
approaches hard-sphere jamming limit (θ∞). The approach
incorporates excluded area effects arising from finite size of
particles in monolayer deposition. For interacting soft
spheres, Adamczyk et al. (25) modified eq 4a:

where B is the blocking parameter and is defined as the
inverse of maximum surface coverage, θmax. However, in case
of multilayer deposition, since particles can deposit not only
on the nascent collector surface but also on the already

retained ones, the deposition dynamics are different and
monolayer blocking functions cannot be used.

In this paper a multiscale theoretical framework based
on mesoscopic simulations to obtain the available surface
function for the multilayer deposition case is developed.
Figure 1a outlines the approach used in this work. Brownian
dynamics simulations are first performed, incorporating
particle diffusion and interparticle P-P and P-S interactions,
to obtain a multilayered fractal deposit. Coverage kinetics in
the different layers are obtained from the simulation and
used to get information on the available surface function.
The available surface function is then used to predict
macroscopic deposition flux in porous media by the solution
of eq 2.

Simulation Approach
Formulation. A semi-infinite region bounded by a 2-D
deposition surface is considered as shown in Figure 1b. The
fluid in the region (water) is assumed to be quiescent (no
flow). The particles were assumed monodisperse with radius,
a. The suspension is assumed sufficiently dilute so that
interactions between particles in the bulk (not deposited on
the surface) are negligible. The thermal energy of the system
is characterized by kT, where k is the Boltzmann’s constant
and T is the temperature of solvent medium with dielectric
permittivity εD. Particles are assumed to be Brownian with
a constant self-diffusion coefficient D. The particles that
approach the surface interact with other particles deposited
on the surface (P-P) and with the nascent deposition surface
(P-S) through the following electric double layer (EDL) and
van der Waals (VDW) forces:

where Ypp and Yps are Yukawa coefficients derived from a
linear superposition approximation. Expressions for the far
field potential provided by Sader (33) were used to derive the
Yukawa coefficients Ypp and Yps:

where F̂ pp
EDL and F̂ ps

EDL are the electric double-layer forces,

and F̂ ps
VDW and F̂ pp

VDW are the van der Waals forces between the
particle and surface and particle and particle respectively, êz

and êrpp are unit vectors along the z direction and along the
line joining the particle centers respectively, rpp is the

FIGURE 1. (a) Approach used for predicting particle deposition flux
in porous media in this work. (b) Box used in simulations. Deposition
surface was 50a × 50a. The height of the box was increased with
the growing deposit. Periodic boundary conditions were used in
x- and y-direction. Electrostatic and van der Waals interactions
between particle-particle and particle-surface were considered.

Φ(θ) ) (1 - θ
θmax) (3)
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Ypp ) 4πεD(kT
e )2(4κaλω + Ψp
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dimensionless (with respect to a) center-to-center interpar-
ticle distance, δps and δpp are dimensionless (with respect to
a) surface-to-surface separation distance between P-S and
P-P, Ψp and Ψs are particle and surface potentials (assumed
to be constant), κ is the inverse Debye length, and App and
Aps are Hamaker constants for P-P and P-S interaction in
water. It should be noted that the z coordinate in the
simulations is different from the Z coordinate at macroscale,
which denotes the axial distance in the packed column. The
particle trajectory was computed using the Langevin equation
following approach outlined by Ermak and Yeh (26) and
Ermak (27):

where r̂(t + δt) is position vector of particle center at time
(t + δt), r̂(t) is position vector at time t, F̂ext(t) is a resultant
force vector due to all external forces acting on the particle,
and δr̂G is Gaussian random displacement due to diffusivity
D of the particle and is chosen independently from a Gaussian
distribution with a zero mean and variance equal to 〈(δr̂G)2〉
) 2D δt.

Numerical Algorithm. The motion of the particle is
simulated in a box bounded by a two-dimensional deposition
surface of length Lx, width Ly, and vertical extent Lz as shown
in Figure 1b. The box is periodic in the x- and y-directions.
The deposition surface is placed at z ) 0, so that centers of
particles have a minimum z coordinate of a. The particles
are sequentially released from the top boundary z ) Lz; the
x- and y-coordinate of the particle is chosen randomly using
a uniform random number generator. The particle is moved
from one point to the other in predetermined time steps, δt,
using the algorithm given by eq 13. δt is chosen such that
the total displacement of a particle in δt is smaller than the
smallest interaction length scale. The deterministic displace-
ment in each of x-, y-, and z-directions is obtained from the
total external force acting on the particle. The total external
force is computed by summing over all P-P and P-S van der
Waals interactions. The random displacement in each
direction, δrG, is computed by generating Gaussian random
numbers. After each move, all interparticle distances, P-P
and P-S forces are updated. To reduce the CPU time, the
P-P and P-S interactions are considered only when they
occur within a cutoff radius Rcut ) a + 4/κ from the particle
center. A particle is irreversibly deposited when the particle
is in physical contact with either the surface or another
particle. The next particle is released from the top boundary
only after the previous particle has deposited. This sequential
release of particles is an adequate representation of a dilute
suspension (28). When the particle moves out of the sidewalls
of the box, periodic boundary conditions are invoked. The
total time taken by each particle to deposit is recorded. The
final height of the deposit is much smaller than total height
Lz of the box.

Simulation Parameters. Simulations were performed with
spherical particles. The typical box sizes used were 50a in
the x-, y-, and z-directions. The Hamaker constants, Aps and
App values, are taken to be 1 × 10-20 J. The distance z of layer
n from the deposition surface was given by:

Layers are defined as planes above the deposition surface,
spaced 2a apart from each other. This representation allows
one to visualize the multilayered deposit as a 3-D domain
consisting of many deposition planes, one above the other,
in which particles deposit. The dimensionless mean coverage
in the nth layer (θn) was defined as:

where Nn is the number of particles whose z coordinates lie
in [2(n - 1)a, 2na]. Hence, θn represents the area occupied
by all the particles in the nth layer and is a measure of local
density in the particle deposit. A particle is assumed to belong
to the nth layer as long as its center lies between 2(n - 1)a
and 2n, irrespective of the contact point with the previously
deposited particle (line joining centers of two contacting
particles is not necessarily vertical). The fractal dimension
(Df) of the deposit was obtained from the following scaling
law (29):

where θn is given by eq 15, and R is a fractal or Hausdorff
codimensionality (29) given by:

where d is the embedding Euclidean dimension of the
physical space (d ) 3 in this study), and Df is fractal
dimensionality of the deposit. Df is thus obtained from the
density variation with z, using eqs 16 and 17.

Results and Discussion
Simulations were first performed with particles diffusing
under pure Brownian motion (pure diffusional deposition,
no interactions considered). Results were validated with those
from large-scale lattice-based diffusion-limited deposition
studies (29). Table 1 shows fractal dimensions of fully grown
particle deposits for three particle radii. The fractal dimen-
sions, averaged over eight independent simulations, were
2.52, 2.54, and 2.50 for a ) 5, 30, and 50 nm particles,
respectively. These values agree well with lattice-based DLA
value of 2.5 reported by Meakin (29) and thus provide an
independent confirmation of the deposit generation code
used in this work.

Variation of Coverage (θn) in Different Layers. Figure 2a
shows a deposit obtained from pure diffusional deposition
of 30 nm particles. The deposit contains 800 particles and
has a fractal dimension of 2.54. Coverage in all the layers was
computed according to eq 15 and was monitored as a function
of time. Figure 2b shows the variation of coverage in different
layers as a function of total coverage θ ()∑n)1

N θn). As shown
in the figure, coverage in each layer gradually increases to
reach saturation value of θn

max. For layers 2 and above,
variation of θn could be accurately described by a sigmoidal
saturation function:

The variation of the surface coverage on the deposition
surface (θn)1) with total coverage, however, was qualitatively
different and monotonically increased approaching θ1

max

TABLE 1. Fractal Dimension of Colloidal Deposits Obtained by
Pure Diffusional Deposition

a (nm) fractal dimension (Df)a

5 2.52 (4.1)
30 2.54 (5.1)
50 2.50 (2.5)
lattice-based DLA (29) 2.50 (2.8)

a Numbers in parentheses indicate % relative standard deviation.

r̂(t + δt) ) r̂(t) + D
kT

F̂ext(t) δt + δr̂G (13)

z ≡ (2n - 1)a (14)

θn )
πa2Nn

LxLy
(15)

θn ∝ z-R (16)

R ) d - Df (17)

θng2(θ) )
θn

max

1 + exp[-æn(θ - θn
0)]

(18)
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asymptotically. Variation of θn)1 could be accurately described
by

where æn, θn
0, b, and γ are constants that depend on the layer

and characterize the kinetics of variation in coverage in that
layer. All these parameters along with the maximum coverage
in each layer can be directly obtained from the simulations.
Table 2 shows values of æn, θn

0, b, and γ for one such case
where Ψp ) 15 mV, Ψs ) -50 mV, and κa ) 1. Table 2 also
shows the R2 statistic for all fits indicating that eqs 18 and
19 accurately describe the variation of coverage. This
information can then be used to describe deposition kinetics
as described below.

Deposition Kinetics in the Absence of Interactions. The
flux of colloidal particles depositing irreversibly on solid
surfaces can be written as (5, 8):

where C is the bulk colloidal concentration far away from
the deposition surface, kdep is particle transfer coefficient
(analogous to mass transfer coefficient), Φ(θ) is available

surface function or dynamic blocking function, J0 is the
incident macroscopic flux from particle transport (available
from mass transport with a perfect sink at the surface), and
J(θ) is the actual flux on the surface and may be different
from J0 depending on the nature of electrostatic or hydro-
dynamic interactions. Thus Φ(θ) is simply ratio of actual flux
J(θ) to incident flux J0. In case of multilayer deposition,
however, the total actual flux J(θ) on the deposition surface
can be written as a sum of flux in n different layers:

Defining total flux J(θ) as

where Φn(θ) is the available surface function for each layer,
and N is the number of layers over which the summation is
carried out. Φn(θ) is thus an indicator function that dictates
the probability of particle depositing in the nth layer and will
be referred to as available surface function. Expressions for
Φn(θ) can be derived from the kinetics of coverage (θn) in n
layers as follows. By definition (eq 22), available surface
function is ratio of actual flux to J0:

However, the actual flux in the nth layer (Jn) is equal to the
rate of change of coverage (θn) in that layer:

To proceed with the analytical derivations, similar to findings
in the RSA simulations of a power law dependence of rate
of change of θ with t, the following generalized parametric
form is used:

where k1 is a constant with units of s-1-â and â is a
dimensionless parameter characterizing the power law
dependence of θ with t. Values for k1 and â can be determined
from first principles by multiparticle Brownian dynamics
simulations, which are very time-consuming (extensive CPU
time). In this work the values are determined by comparison
to experimental observations that reflect the overall growth
dynamics of the deposit (discussed in a later section in detail).
Thus, the variation of θ with t is given by

Combining eqs 23b and 23c

Using expression for θn from eqs 18 and 19

FIGURE 2. (a) Morphology of colloidal deposit obtained after
depositing 800 particles. (b) Variation of coverage in different layers
as a function of θ (θ ) ∑n)1

N θn).

TABLE 2. Regression Parameters (eqs 18 and 19) for Variation
of Coverage in the First Few Layers for Ψp ) 15 mV, Ψs )
-50 mV, Ka ) 1

layer, n θ1
max b γ R 2 (%)

1 0.3296 0.3296 4.528 98.17

layer, n θn
max æn θn

0 R 2 (%)

2 0.2079 10.6383 0.3851 99.99
3 0.1850 11.8036 0.6028 99.92
4 0.1568 9.3897 0.7738 99.85
5 0.1224 9.4162 0.8934 99.64
6 0.0867 9.3284 1.0020 99.75
7 0.0768 10.3413 1.0760 98.58

θn)1(θ) ) θ1
max - b exp(-γθ) (19)

J(θ) ≡ Φ(θ)kdepC ) Φ(θ)J0 (20)

J(θ) ) ∑
n)1

N

Jn(θ) (21)

J(θ) ) ∑
n)1

N

Jn(θ) ) J0∑
n)1

N

Φn(θ) (22)

Φn(θ) )
Jn(θ)

J0
(23a)

Jn(θ) ) 1

πa2

∂θn(θ)

∂t
) 1

πa2

∂θn(θ)

∂θ
∂θ
∂t

(23b)

∂θ
∂t

) k1tâ (23c)

θ )
k1

â + 1
tâ+1 (23d)

Jn(θ) )
k1tâ

πa2

∂θn(θ)

∂θ
(23e)
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and

An expression for available surface functions Φn(θ) for
each layer can now be obtained by combining eqs 24, 25,
and 23a and noting that J ) kdepC0. Hence

and

The right-hand side of eq 26 is a monotonically decreasing
function with respect to θ, while that of eq 27 has a maximum
at θ ) θn

0. Equations 26 and 27 give the probability of
particles depositing in the nth layer at time t for a given value
of θ. It should be noted that the values of kdep, C0, a, k1, and
â should be known a priori to obtain the value of the available
surface function. Figure 3a shows a plot of Φn(θ) as a function
of θ for the case of diffusional deposition in the absence of
interactions (deposit in Figure 2a). The values of other
parameters used were kdep ) 10-7 m‚s-1, C0 ) 1016 m-3, â )
0.05, k1 ) 2.34 × 10-6 s-1.05, and a ) 30 nm. The figure shows

that the probability of particle depositing on the surface (n
) 1) initially (θ ) 0) is close to 1 (with very few particles
depositing in the second layer) and then decreases mono-
tonically approaching 0. In each upper layer (n g 2), the
probability has a distribution, with maximum probability at
a certain value of θ ()θn

0). Φn, defined as in eqs 26 and 27,
can thus be interpreted as a switching function that dictates
at what values of θ each layer starts to fill and subsequently
reaches saturation. It also determines the rate at which a
layer is filled. As the coverage in the first layer begins to
approach saturation coverage, the probability of deposition
in that layer starts decreasing. At the same time, the
probability of particles depositing in the second layer
gradually starts increasing and reaches a maximum at a
certain value of θ. A few particles concurrently deposit in the
third and upper layers, although with low probabilities. As
the coverage in the second layer begins to approach its
saturation value, the probability of particles depositing in
the second layer starts decreasing and that in the third (and
upper) layer start increasing. Each layer thus goes through
a similar phase of increasing and decreasing deposition. From
eqs 26 and 27, the total available surface function for the
entire deposit can now be written as

Equation 28 gives the total available surface function for the
deposit, and the entire kinetic information is embedded in
it. The number of layers N over which the summation is
carried out will depend on the stage of deposition. For
instance, in the initial stage of deposition, particles deposit
only in the first few layers (n < 10), and considering the first
10 layers will give a sufficiently accurate value of Φtotal(θ). In
this study, whenever feasible, the first 25 layers are considered
to compute Φtotal(θ).

It should be noted that available surface function as
defined in eq 28 assumes that variation of coverage in each
layer can be described using eqs 18 and 19. While this
assumption is valid in most multilayer deposition systems
since the expressions are obtained by fitting results from
multilayer simulations, it fails to capture the dynamics of
ideal hard-sphere monolayer systems. For an ideal hard-
sphere deposition, the coverage on the deposition surface
(θ1(θ)) increases linearly with θ (with(dθ1(θ)/dθ) ) 1) to reach
saturation and cannot be described by eq 19. Wherever
applicable, the RSA blocking function (eq 4b) has been used
to describe dynamics of monolayer deposition in this study.

Figure 3b shows a plot of Φtotal(θ) computed using eq 28
and is sum of all Φn(θ) at a given θ in Figure 3a. Figure 3b
shows that Φtotal(θ) is 1 initially (i.e., the actual flux is equal
to J0, nascent surface flux available from macroscopic
transport). Φtotal(θ) then gradually starts increasing due to
increase in the surface area made available by the deposited
particles. It should be noted that deposition flux is more
than J0 at all θ. If it is assumed that the entire spherical surface
area of the deposited particles is available for deposition,
then the total surface area available for deposition is
approximately ) (area of bare deposition surface) - (pro-
jected area covered by particles in the first layer) + (surface
area of the particles in the first layer) + (surface area of the
particles in the upper layers) ≈ 1 - θ1 + 2θ1 + 4(θ - θ1) )
1 - 3θ1 + 4θ. Since in the initial stage of deposition, θ ) θ1,
the available area can be approximated by (1 + θ). Thus the
available area keeps increasing with θ for the case of

Jn)1(θ) )
k1tâ

πa2

∂

∂θ
(θ1

max - b exp(-γθ)) )

(k1tâ

πa2)b γ exp(-γθ) (24)

Jng2(θ) )
k1tâ

πa2

∂

∂θ( θn
max

1 + exp[-æn(θ - θn
0)]) )

(k1tâ

πa2)(ænθn
max

2 ) 1

cosh[-æn(θ - θn
0)] + 1

(25)

Φn)1(θ) ) 1
kdepC0

(k1tâ

πa2)b γ exp(-γθ) (26)

Φng2(θ) )

( 1
kdepC0

)(k1tâ

πa2)(ænθn
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2 ) 1

cosh[-æn(θ - θn
0)] + 1

(27)

FIGURE 3. Variation as a function of θ of (a) available surface
function in each layer Φn, and (b) the total available surface function
Φtotal(θ). Simulations were for pure diffusional deposition (no P-P
and P-S interactions considered)

Φtotal(θ) )
J

J0

)
1

kdepC0
(k1tâ
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∑
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2
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diffusional deposition in the absence of interactions. Since
the available surface function only reflects change in available
surface area in this case (i.e., when no interactions are
present), it increases with increasing θ in Figure 3b. It should
be noted that this trend in Φtotal(θ) is in contrast to monolayer
RSA available surface function, which monotonically de-
creases from 1 to 0, since available area for deposition also
decreases with increasing θ.

Influence of Ionic Strength on Deposition Kinetics. The
approach developed in the previous section can be used to
study influence of ionic strength on the deposition kinetics.
As the ionic strength (characterized by κa) of the medium
changes, the range of electrostatic interactions between P-P
and P-S also change, which further affect the kinetics of
deposition. It should be pointed out that for low values of
κa (≈0.1) electrostatic interactions are long ranged but weaker
in magnitude. For larger κa values (≈10) the interactions are
short ranged but stronger in magnitude. Figure 4a shows
variation in saturation coverage in different layers (n ) 1, 3,
6, 8, and 10) as a function of κa for a 30 nm particle at Ψp

) 15 mV and Ψs ) -50 mV. The coverages are averaged over
six replicate simulations. Saturation coverages in all layers
are significantly lower compared to the hard-sphere jamming
limit of 0.545 due to influence of interparticle interactions.
Maximum fractional coverage in the first layer (on the
deposition surface, n ) 1) increases from 0.16 at κa ) 0.1 to
0.23 at κa ) 0.2 and 0.32 at κa ) 1 and then starts decreasing
with increasing κa. Coverages are maximum at κa ) 1. This
increasing-decreasing trend is consistent with the variation
of P-P and P-S forces with κa shown in Figure 4b. Figure
4b shows variation of total P-P and P-S force at a surface-
to-surface separation distance of 0.5 (normalized by a) as a
function of κa. Both P-P and P-S forces go through a
maximum at κa ≈ 2. Correspondingly, coverages also go
through a maximum at κa ≈ 1. The results are qualitatively
similar to those reported by Kulkarni et al. (22) for a one-
dimensional deposition surface. It should also be pointed
out that deposition for κa ) 0.1 is almost monolayer (coverage
at n ) 2 is 0.025; not shown in Figure 4a) due to high lateral
double layer repulsion. For κa ) 0.2, deposition stops after
n ) 6 due to large P-P repulsion forces contributed by

neighboring particles in the fractal deposit. For higher κa
values, coverages are lower due to increased physical
screening by the particles deposited in the upper layers.

Figure 5 shows the total available surface function
(Φtotal(θ)) at three values of κa, for the corresponding case in
Figure 4. The total available surface function was computed
according to eq 28. Required parameters were obtained
directly from the simulation. Values of other parameters used
in the calculation were kdep ) 10-7 m‚s-1, C0 ) 1016 m-3, â
) 0.0, k1 ) 2.83 × 10-6 s-1.0, and a ) 30 nm. A full-grown
fractal structure was obtained from the simulations and
variation of θn(θ) with θ was then computed. Equations 19
(for the first layer) and 18 (layers 2 and above) were then
fitted to these data to obtain required parameters in eq 28.

As seen in the Figure 5, deposition kinetics remarkably
vary as the dimensionless Debye length (κa) changes from
0.1 to 10. At κa ) 0.1, the available surface function
monotonically decreases from about 1.76 at θ ) 0 to 0 at θ
) 0.13 resembling the RSA-type blocking function in mono-
layer deposition. At this low ionic strength, interactions are
long-ranged, and high repulsion from the deposited particles
results in practically monolayer deposition with θn)1

max ) 0.16,
θn)2

max ) 0.025, θn)3
max ) 0.0009 (deposition stops after third

layer). As κa is further increased to 1, interactions become
short-ranged, and the magnitude of P-S attractive force
dominates over the P-P repulsion, at this ionic strength (see
Figure 4b). As a result, the deposition flux increases with
increasing surface area of the deposit. As the ionic strength
is further increased (i.e., as κa increases to 10), Φtotal(θ) shows
a completely different trend. At this ionic strength, P-P
repulsive interactions dominate; P-P forces are long-ranged,
although weak in magnitude. Accordingly, the flux initially
decreases with increasing θ, and then starts increasing
gradually due to increase in surface area made available by
the deposited particles. Moreover, note that the values of
available surface function (Φtotal) at θ ≈ 0 qualitatively follow
a trend similar to that for the surface coverage (θn)1) in Figure
4a; that is, Φtotal decreases as κa is increased from 0.1 to 10.

Predicting Macroscopic Flux in Porous Media. The
approach developed above can be used to compute mac-
roscopic deposition flux in porous media as outlined in Figure
1a. Φtotal(θ) can be estimated from the simulations according
to eq 28. All parameters on the right-hand side of eq 28 can
be directly obtained from the Brownian dynamic simulations
in this study, except the two parameters k1 and â. These two
parameters characterize kinetics of θ according to eq 23c. As
described earlier, in this work a sequential algorithm was
used that involved releasing particles one by one, such that
a new particle is released into the simulation box only after

FIGURE 4. Variation as a function of Ka of (a) saturation coverage
in each layer and (b) P-P and P-S interaction forces. Ψp ) 15 mV,
Ψp ) -50 mV, a ) 30 nm, and δ/a ) 0.5, where δ is the surface-
to-surface separation distance.

FIGURE 5. Variation of total available surface function (Φtotal(θ))
as a function of θ at different values of Ka. Ψp ) 15 mV, Ψp ) -50
mV, a ) 30 nm.
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the previously released particle deposited. This algorithm
tracks the total time taken by each particle to deposit but
does not involve an actual, chronological time scale (t) that
can be used to relate θ with t. In the absence of this
information from first principles, the approach developed
above can be used to extract information about the mor-
phological evolution of particle deposit at the collector surface
from an experimental particle breakthrough curve. The
approach involves treating k1 and â as fitting parameters
and solving eqs 2a and 2b along with eq 28 to match the
experimental breakthrough curves. Multiparticle Brownian
dynamic simulations can be performed to evaluate these
constants (parameters k1 and â) from first principles, although
at the expense of significantly increasing the CPU time
requirements. This is beyond the scope of the present study
where the primary goal is to validate the novel approach
described.

Once values for parameters k1 and â are available, the
multiscale linking approach was validated using experimental
breakthrough curves reported by Ryde et al. (1). Multilayer
deposition of spherical hematite particles (a ) 33 nm) onto
spherical glass collectors (ac ) 55 µm) in a 1.3 cm deep packed
column was used to obtain particle breakthrough curves.
Simulations were performed under identical conditions to
obtain Φtotal for the experimental system of Ryde et al. (1)
with physical and chemical parameters as listed in Table 3.
Particle and surface potentials were approximated by mea-
sured electrokinetic potentials. Figure 6a,b shows experi-
mental and predicted particle breakthrough curves at three
ionic strengths (I) of 1 × 10-4, 2 × 10-2, and 10-1 M
corresponding to κa ≈ 1.1, 15.4, and 34.3, respectively. Though
k1 and â have been used as adjustable parameters to obtain
better quantitative agreement, their definitions have a clear
physical meaning (they together define how θ varies with
time t). Values of kdep (i.e., particle transfer coefficient for
clean collector surface) were estimated using eq 2 to match
the first experimental data point. It is worth noting that values
of kdep can be theoretically estimated with reasonable
accuracy for given physicochemical and hydrodynamic
conditions (30).

Figures 6a,b show good agreement between the predicted
(solid lines) and experimental (symbols) values, particularly
at high ionic strength (Figure 6b). Figure 6a (κa ) 1.1)
corresponds to monolayer deposition due to high lateral
repulsion between deposited particles. Accordingly, the
monolayer RSA dynamical blocking function (eq 4b) was used
along with the monolayer saturation coverage predicted by
the simulations to obtain the breakthrough curve. As noted
earlier, for strictly monolayer deposition with high inter-
particle repulsive interaction, variation of coverage on the
surface (θ1) increases linearly with θ and cannot be described

using eq 19. The predicted breakthrough concentration is
slightly higher at long times compared to experimental values.
Potentials based on linear superposition approximation have
been known to overestimate the interactions at close
separations (31). Thus, the maximum coverage predicted by
the simulations at κa ) 1.1 could be smaller than the
corresponding experimental value. The agreement in Figure
6b at κa ) 15.4 and κa ) 34.3 is remarkable, considering the
fact that the potentials used to represent P-P and P-S

TABLE 3. Physicochemical Parameters Used in the Simulation, Corresponding to Experimental Dataa of Ref 1

parameter Ka ) 1.1 Ka ) 15.4 Ka ) 34.3

collector radius, ac (µm) 55 55 55
particle diffusion coefficient, D (m2‚s-1) 7.4 × 10-12 7.4 × 10-12 7.4 × 10-12

particle radius, a (nm) 33 33 33
depth of packed column, L (cm) 1.3 1.3 1.3
superficial fluid velocity, Vs (m‚s-1) 1.76 × 10-4 1.76 × 10-4 1.76 × 10-4

particle number concentration, C0 (m-3) 2.1 × 1016 2.1 × 1016 2.1 × 1016

particle transfer coefficient, kdep (m‚s-1) 1.2 × 10-6 8.68 × 10-7 5.5 × 10-7

constant, k1 (eq 23c) (s-1-â) - 8.04 × 10-5 1.39 × 10-5

power, â (eq 23c) - -0.05 0.315
ionic strength of medium, I (mol‚L-1) 1.0 × 10-4 2.0 × 10-2 1.0 × 10-1

particle potential, Ψp (mV) 76 46 31
deposition surface potential, Ψs (mV) -74 -48 -22

a Experimental data corresponding to deposition of hematite particles on glass, dispersed in aqueous solutions. Other parameters used were
as follows: media porosity ) 0.36; particle diffusivity ) 7.4 × 10-12 m2‚s-1; particle density )5.24 g‚cm-3; density of water ) 0.997 g‚cm-3; dynamic
viscosity of water ) 8.9 × 10-4Pa‚s; Hamakar constant for P-S interaction ) 10-20 J; Hamakar constant for P-P interaction ) 10-20 J.

FIGURE 6. Experimental data of Ryde et al. (1) (symbols) for
irreversible deposition of spherical hematite particles on glass
surfaces in aqueous dispersion at three ionic strengths. Physical
and chemical parameters of the system are listed in Table 4.
Predicted values from this work are shown by solid lines. Deposition
at low ionic strength (I ) 10-4) was clearly monolayer; predicted
curve is based on RSA-type available surface function (eq 4b). The
nominal inlet particle concentration was close to 2.1 × 1016 m-3

in the experiments (1). Other parameters used in computation are
listed in Table 4. Also shown are the snapshots of collector surface
at the column entrance (Z ) 0 cm) at time t ) 20 and 50 min. The
deposits clearly show multilayered structures at long times.
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interactions are only approximate at best. The qualitative
trend of increasing deposition with time (“ripening”) at κa
) 34.3 is captured by the model. Figure 6b also shows
snapshots of collector surface located at the column entrance
(Z ) 0 cm) obtained from the simulations at time t ) 20 and
50 min for κa ) 34.3. The deposit had a multilayered structure
at long times.

Figure 7 shows the top view of collector surfaces (obtained
from simulation) at different locations in the column
(entrance, middle, and exit) as the deposition progresses for
the case of κa ) 34.3 in Figure 6b. As expected, the number
density of deposited particles decreases as the distance from
the column entrance increases. At any given location in the
column, the number density increases with time. At long
times the deposition is clearly multilayered.

Values of parameters k1 and â were obtained by trial and
error to get the best quantitative agreement with the
experimental data. As noted earlier, the approach used in
this work requires that the values of k1 and â be known a
priori. k1 is a proportionality constant (k1 ∼ O(πa2 kdepC0),
since Φtotal ∼ O(1)), whereas, exponent â influences the
transient features of deposition. While kinetics of monolayer
systems are well studied and time dependence of θ is known,
no such information is available for a multilayered system.
The different values of â obtained for curves in Figure 6b (â
) -0.05 at κa ) 15.4 and â ) 0.315 at κa ) 34.3) suggest that
dynamics of multilayered systems could be significantly
different from that of ideal monolayer systems.

A mechanistic framework that integrates basic under-
standing of the physicochemical phenomena at the mesoscale
with the continuum-level transport equations was used to
obtain meaningful results for systems involving particle
deposition. With values of two parameters that describe
overall deposition kinetics determined from experiments,
the detailed dynamics of deposition was predicted, and the
influence of solution ionic strength was successfully inves-
tigated. The approach can be generalized and extended to
predict the influence of other parameters such as particle
and collector radius, surface charge heterogeneity, and

hydrodynamic interactions on particle deposition in practical
systems such as deep bed filters. A 2-fold approach can
be taken for determining the overall deposition kinetic
parameterssone, as presented in this work, from experiments
for a specific type of system; or second, using rigorous,
computationally intensive first principles multiparticle Brown-
ian dynamics simulations.
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